skip to main content


Search for: All records

Creators/Authors contains: "Gorce, Adélie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The cross-correlation between the 21 cm field and the galaxy distribution is a potential probe of the Epoch of Reionization (EoR). The 21 cm signal traces neutral gas in the intergalactic medium and, on large spatial scales, this should be anticorrelated with the high-redshift galaxy distribution, which partly sources and tracks the ionized gas. In the near future, interferometers such as the Hydrogen Epoch of Reionization Array (HERA) are projected to provide extremely sensitive measurements of the 21 cm power spectrum. At the same time, the Nancy Grace Roman Space Telescope (Roman) will produce the most extensive catalog to date of bright galaxies from the EoR. Using seminumeric simulations of reionization, we explore the prospects for measuring the cross-power spectrum between the 21 cm and galaxy fields during the EoR. We forecast a 12σdetection between HERA and Roman, assuming an overlapping survey area of 500 deg2, redshift uncertainties ofσz= 0.01 (as expected for the high-latitude spectroscopic survey of Lyα-emitting galaxies), and an effective Lyαemitter duty cycle offLAE= 0.1. Thus the HERA–Roman cross-power spectrum may be used to help verify 21 cm detections from HERA. We find that the shot-noise in the galaxy distribution is a limiting factor for detection, and so supplemental observations using Roman should prioritize deeper observations, rather than covering a wider field of view. We have made a public GitHub repository containing key parts of the calculation, which accompanies this paper:https://github.com/plaplant/21cm_gal_cross_correlation.

     
    more » « less
  2. ABSTRACT

    Combining the visibilities measured by an interferometer to form a cosmological power spectrum is a complicated process. In a delay-based analysis, the mapping between instrumental and cosmological space is not a one-to-one relation. Instead, neighbouring modes contribute to the power measured at one point, with their respective contributions encoded in the window functions. To better understand the power measured by an interferometer, we assess the impact of instrument characteristics and analysis choices on these window functions. Focusing on the Hydrogen Epoch of Reionization Array (HERA) as a case study, we find that long-baseline observations correspond to enhanced low-k tails of the window functions, which facilitate foreground leakage, whilst an informed choice of bandwidth and frequency taper can reduce said tails. With simple test cases and realistic simulations, we show that, apart from tracing mode mixing, the window functions help accurately reconstruct the power spectrum estimator of simulated visibilities. The window functions depend strongly on the beam chromaticity and less on its spatial structure – a Gaussian approximation, ignoring side lobes, is sufficient. Finally, we investigate the potential of asymmetric window functions, down-weighting the contribution of low-k power to avoid foreground leakage. The window functions presented here correspond to the latest HERA upper limits for the full Phase I data. They allow an accurate reconstruction of the power spectrum measured by the instrument and will be used in future analyses to confront theoretical models and data directly in cylindrical space.

     
    more » « less
  3. Abstract

    We report the most sensitive upper limits to date on the 21 cm epoch of reionization power spectrum using 94 nights of observing with Phase I of the Hydrogen Epoch of Reionization Array (HERA). Using similar analysis techniques as in previously reported limits, we find at 95% confidence that Δ2(k= 0.34hMpc−1) ≤ 457 mK2atz= 7.9 and that Δ2(k= 0.36hMpc−1) ≤ 3496 mK2atz= 10.4, an improvement by a factor of 2.1 and 2.6, respectively. These limits are mostly consistent with thermal noise over a wide range ofkafter our data quality cuts, despite performing a relatively conservative analysis designed to minimize signal loss. Our results are validated with both statistical tests on the data and end-to-end pipeline simulations. We also report updated constraints on the astrophysics of reionization and the cosmic dawn. Using multiple independent modeling and inference techniques previously employed by HERA Collaboration, we find that the intergalactic medium must have been heated above the adiabatic cooling limit at least as early asz= 10.4, ruling out a broad set of so-called “cold reionization” scenarios. If this heating is due to high-mass X-ray binaries during the cosmic dawn, as is generally believed, our result’s 99% credible interval excludes the local relationship between soft X-ray luminosity and star formation and thus requires heating driven by evolved low-metallicity stars.

     
    more » « less